ACR Technology Base: Containment

by Andrew White, Director, Reactor Safety

Presented to US Nuclear Regulatory Commission Office of Nuclear Reactor Regulation September 26, 2002

Introduction

- The containment of a CANDU reactor is designed to mitigate the consequences of an accident
- During an accident the containment building could be subjected to a harsh environment of hot vapor, fission products from failed fuel, and hydrogen released from oxidation reactions
- Research is performed to ensure that we understand:
 - The time dependent nature of the environment
 - The behavior of fission products
 - Any threats posed by released hydrogen (primarily a concern for severe accidents)

Containment Performance

- R&D focused on determining behavior of effluent from the reactor coolant system in containment
- Experimental:
 - Large-scale gas mixing facility
 - Used to study mixing, buoyancy-induced flows, stratification, condensation, effects of containment partitions
 - Data used to validate GOTHIC
- Modeling:
 - GOTHIC, with addition of CANDU-specific models for hydrogen behavior, used to model containment thermalhydraulics and hydrogen transport

Large Scale Gas Mixing Facility

- Volume: 1000 m³ (35000 ft³)
- Atmosphere: air, steam and helium
- Internal partitions simulate subcompartments

Example of a Gas-Mixing Experiment

- Steam injected and formed a stratified layer
- Helium injected, breaks through stratified layer after ~200 seconds, and rises
- After 1200 seconds, blowers create uniform mix

Fission Product Behavior

- In the event of a LOCA, fission products from failed fuel are discharged from the break
- Fission products that remain in the vapor phase are more subject to release from containment than those that partition to water
- lodine has been a focus because of its relative abundance, high biological activity and gaseous forms

Iodine Behavior in Containment

- Primary concern is the time dependent concentration of gaseous iodine
- Released from fuel into containment mainly as Csl, which dissolves as non-volatile iodide in water
- Under the oxidizing and high radiation environment following an accident, non-volatile iodide would react and become volatile and partition into the gas phase

Iodine Reactions and Transport

Factors affecting lodine Behavior

- Iodine exists in various chemical states
- Post-accident containment is under irradiation and not in chemical equilibrium
- lodine chemistry is driven by water radiolysis
- Many reactions and processes are inter-dependent
- Iodine behavior can not be easily scaled from correlations based on integrated tests
- Requires a correct representation of aqueous chemistry (which can be scaled)

AECL Iodine Program Components

- Intermediate-scale integrated-effects tests in the Radioiodine Test Facility (RTF)
- Supporting bench-scale tests to separate and quantify individual effects
- Development and validation of containment iodine behavior models, LIRIC & IMOD, for safety analysis
- International collaboration
 - EPRI ACEX
 - PHEBUS
 - International Standard Problem code comparison exercise

Radioiodine Test Facility

A

50 RTF Tests

- Type of Vessel Surface
 - Stainless Steel (electropolished, untreated)
 - Organic Coatings on carbon steel or concrete (Vinyl, Epoxy, Polyurethane)
 - Inorganic Coatings (zinc primer)
- Radiation on, Radiation off
- pH controlled, pH uncontrolled: range 4.5 10.5
- Temperature
 - constant throughout experiment: 25, 60, 90°C (80, 140, 190°F)
 - steps from 25 to 80°C (80 to 170°F)
- Condensing, Non-condensing
- Organic and Inorganic Additives

Bench-Scale R&D Areas

- Aqueous Phase Chemistry
 - Inorganic Iodine Reactions
 - Water Radiolysis
 - Effects of Organic Impurities
 - Sources of organic compounds dissolved in water
 - Radiolytic decomposition of organic impurities
 - Organic iodide formation & decomposition
- Aqueous-Gas Phase Partitioning of Volatile Species
- Iodine Surface Interaction

Model Development & Validation

LIRIC

- A comprehensive mechanistic model, based on our extensive knowledge of relevant chemical reactions and mass transport
- Performs well when tested against bench-scale and RTF tests carried out over a wide range of conditions
- Due to its complexity and size, integration of LIRIC into a safety analysis code is considered to be impractical

IMOD

- Reduced reaction set based on extensive LIRIC analysis and simulations of various RTF tests
- A smaller and simpler model, but maintains many of the capabilities of LIRIC

LIRIC

IMOD

Aqueous Phase

NONVOLI(aq) \leftarrow I₂(aq) I₂(aq) \rightarrow HVRI(aq), LVRI(aq) HVRI(aq), LVRI(aq) \rightarrow NONVOLI(aq)

Dissolution Radiolytic decomposition Acid-Base Equilibria

Total 16 reactions

IMOD Simulation of an RTF Test (organic addition in a stainless steel vessel)

IMOD Simulation of an RTF Test (organic addition in a stainless steel vessel)

IMOD Simulation of an RTF Test (organic addition in a stainless steel vessel)

A

International Collaboration

- EPRI ACE (Advanced Containment Experiments) & ACEX
 - RTF tests, critical review of the current understanding of iodine chemistry and model developmental work were performed in support of ACE & ACEX (extension) projects
- PHEBUS-FP
 - RTF & Bench Scale experiments investigating LWR severe accident phenomena
- International Standard Problem (ISP) 41 and 41F Phase 1 & 2
 - Iodine code comparison exercises endorsed by NEA (Nuclear Energy Agency) CSNI (Committee on the Safety of Nuclear Installations)
 - AECL has lead the very successful exercises
 - AECL's iodine codes, LIRIC and IMOD are participating

AECL Iodine Program Status

- We have a good understanding of iodine behavior in containment
- Models have been developed and shown to predict iodine behavior well

Hydrogen Behavior In Containment

Sources of Hydrogen

- Short-term: reactions between hot fuel and RCS components and steam
- Long-term: water/steam radiolysis and metal corrosion in containment

Areas of Investigation

- Transition from deflagration to detonation (DDT)
- Effects of deflagration and standing flames on containment structures
- Development and evaluation of Passive Auto-catalytic Recombiners

Results of Hydrogen R&D

- Acquired fundamental understanding of key combustion phenomena:
 - the mechanisms for flame acceleration and transition to detonation
 - the dynamics of flame jet ignition
 - the mechanisms and dynamics of standing flames
 - the mechanisms and dynamics of vented combustion
- Developed computer models for implementation in GOTHIC to predict gas distribution and combustion pressure
- Program based on a variety of facilities

Containment Test Facility (CTF)

6-m³ (200 ft³)
 sphere and a 10- m³
 (350 ft³) cylinder

- pressures up to
 10MPa (1500 psi)
- temperatures up to 150°C (300°F)

vessels may be inter-connected by 30 cm (12 in) and 50 cm (20 in) diameter ducts

Diffusion Flame Facility (DFF)

 silo: 5 m (16 ft) in diameter and 8 m (26 ft) high

 Tests with H₂ / steam jet flames (up to 15 cm (6 in) diameter) in air / steam atmosphere (up to 30% steam by volume)

Large Scale Vented Combustion Facility

 rectangular enclosure with an internal volume of 120 m³ (4200 ft³)

 electrically trace-heated and insulated to maintain temperatures in excess of 100°C (212°F)

•can be subdivided into 2 or 3 compartments

Combustion Codes

GOTHIC

 Used to calculate hydrogen distribution inside containment and the combustion pressure in the event of an ignition

DDTINDEX

 Used to calculate a set of criteria for assessing the possibility of supersonic flames via flame acceleration and subsequent transition to detonation

GOTHIC Example

 Hydrogen distribution in containment during a large LOCA (header break)

DDTINDEX Outputs

Passive Autocatalytic Recombiners

- recombine hydrogen with oxygen in a controlled fashion
- based on AECL's wetproofed catalyst technology developed for heavy water production
- have been qualified with tests in the large-scale vented combustion facility

A

AECL PAR - Self-Start Test

Initial Conditions: 1.4% H₂, 100% R.H., T=14°C, P=98.4 kPa

Summary

- Research programs into areas relevant to containment are mature and widely-recognized
- Models and computer programs have been developed and validated for CANDU safety, licensing and design
- Only work required to support ACR is minor anticipatory R&D (e.g., qualification of passive recombiners for ACR conditions)

